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I review the main aspects of the simulated gravity that arises in brane-world models in
which the reflection symmetry is broken. I recall its main aspects, show how a Newton-
like force can be simulated on small scales, and discuss the post-Newtonian constraints
as well as the cosmology of this model.
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1. INTRODUCTION

The suggestion by Randall and Sundrum (1999) that the effective four-
dimensional gravity can be recovered on a four-dimensional brane embedded in a
five-dimensional space-time (referred to as bulk) due to strong curvature effects
has originated a lot of investigations of the, now known as, brane-world scenarios
(see, e.g., Bin´etruyet al., 2000).

Most of the works have focused on three-branes embedded in a five-
dimensional space-time with reflection symmetry along the extradimension. This
was originally motivated by the Hoˇrava–Witten model (Horava and Witten, 1996)
in which 11-dimensional M theory is compactified on the orbifoldS1/Z2 and
which can be reduced to an effective five-dimensional theory with three-branes
located at the orbifold’s fixed points. However, in generalD-branes do not have
to be supported at an orbifold fixed point.

Although originally physically motivated these two hypotheses (of dimen-
sionality and symmetry) owe their popularity to their convenience. To derive the
effective Einstein equations on the brane, one needs to evaluate the extrinsic cur-
vature of the brane in terms of the matter content of the theory. In the case of a
five-dimensional reflection symmetric space-time, it is completely determined by
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the Israel junction conditions relating the discontinuity of the extrinsic curvature
to the matter content of the brane, then allowing the four-dimensional geometry
of the brane to be calculated by using the Gauss–Codacci relations (Shiromizu
et al., 2000). In more general cases where one has more transverse dimensions, the
Gauss–Codacci equation relating the Ricci tensor of the brane to the geometry of
the bulk can be generalized (see, e.g., Carter, in press) but there is no straightfor-
ward generalization of the Israel junction conditiond that apply only to the case of
a hypersurface. Besides, when the reflection symmetry is relaxed, the Israel junc-
tion conditions alone are not sufficient to determine the extrinsic curvature and
one needs to complement them with a dynamical equation for the brane motion.

Some specific models in which the reflection symmetry was broken in an ad
hoc way by gluing two anti-de Sitter space-times (Daviset al., 2001; Deruelle and
Dolezel, 2000; Ida, 2000; Krauss, 1999; Perkins, 2001; Stoicaet al., 2000) with
different cosmological constants have been studied. Recently, a natural mechanism
for breaking the reflection symmetry by means of a gauge form field has been
proposed (Battye and Carter, 2001; Carter and Uzan, 2001). Then, it was shown
(Battyeet al., 2001) that, as long as the contributions of the bulk Weyl tensor are
small enough (exactly in the same way as in the reflection symmetric case), the
effective Einstein equations on the brane can be recovered without assuming any
reflection symmetry and that they take the general form

Ḡµν = −34γ̄µν + 8πG4T̄µν +O(T̄ 2), (1)

where Greek indices referred to the background space-time, ¯γµν is the first fun-
damental tensor,̄Gµν its Einstein tensor, and̄Tµν the stress–energy tensor of the
matter localized on the brane (see Section 2 for detailed definitions). The effective
gravitational constant is given by

G4 = 3

4π T̄∞

[
(π2G5T̄∞)2−

(
f̄

4T̄∞

)2
]

, (2)

whereG5 is the five-dimensional gravity constant,̄f is the normal component of
the force applied on the brane and̄T∞ its bare tension. This work showed that the
worldsheet geometry, and thus the apparent gravity on the brane, has three origins.
There is a first part coming from the geometry of the bulk space-time, a second
part arising from the discontinuity of the extrinsic curvature across the worldsheet
and a third part coming from its mean value. In the reflection symmetry case, the
third effect is absent (since the mean value of the extrinsic curvature vanishes).

The opposite limit in which the guenuine five-dimensional gravity is negligi-
ble, i.e. whenG5 → 0, the preceeding approach ceases to be valid mainly because
the contributions from the bulk Weyl tensor contain a coefficientG5 in their de-
nominator. Thus, they become dominant and one has to start from a fresh approach
to deal with this apparently singular limit.
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Here, we thus focus on the case where the effective four-dimensional grav-
ity on the brane is recovered not by a confinement mechanism but by having a
sufficiently small five-dimensional gravitational constant so that the genuine five-
dimensional gravity is completely negligible.

In this approach, the four dimensional gravity is no more a fundamental force
but an apparent effect due to the acceleration of a brane-world universe in a higher
dimensional space-time. This quasi-gravity (Carter, 2000) or simulated gravity
(Carteret al., 2001) is thus a phenomenon that affects matter locally approxima-
tively in the same way as true gravity, even though its origin is different and its
detailed behavior may be rather different. To make a comparison, consider the
case of the standard nonrelativistic Newtonian gravitational theory. In this context,
the centrifugal force due to, e.g., the rotation of the Earth modifies locally the
observable acceleration by a term to be added to the Newton attraction force. This
contribution is indistinguishable from the Newton contribution in a crude experi-
ment but differences will appear in more sophisticated experiments via, e.g., the
Coriolis effect.

As an analogy to this simulated gravity force, consider the well-known exper-
iment used to illustrate how relativistic gravity is a consequence of the space-time
geometry and in which a mass,M say, is placed on a piece of fabric of tension
T̄∞. If we were performing this experiment far from all stars and galaxies, the
mass will not bend the fabric and a test particle will remain at rest with respect
to this mass: the external space is simply the Minkowski space and the situation
is reflection symmetric with respect to the fabric so that the mass cannot bend it
(see Fig. 1). If we were now performing this experiment in an accelerated lift, or
simply on Earth, the acceleration of the lift or the Earth gravitational acceleration
g will break the reflection symmetry and the mass will produce a dip in the level of
the surrounding fabric. This will generate an effective two-dimensional effective
potential, given by

V2D
eff =

g2

2π T̄∞
M ln r, (3)

Fig. 1. If the true gravitation is negligible, a mass will not bend a reflection symmetric brane
[left] whereas it induces a dip in the level of the surrounding brane when this symmetry is
broken [right].
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simulating a two-dimensional Newton-like force so that a test particle will orbit
around the central mass in the same way as Earth orbit around the Sun. This
example shows that the acceleration of the two-dimensional brane induces an
effective two-dimensional Newton force in the brane even if the three-dimensional
gravity is negligible. This two-dimensional effective gravity force is engendered
by the geometry of the brane so that we will have a metric theory of gravity, hence
satisfying the weak equivalence principal and the correct Newtonian limit. But, yet
it can be noted that such a gravity law is described by only one degree of freedom
(the displacement of the brane) contrary to standard gravity which has two degrees
of freedom (the two polarization of the massless graviton).

In this paper, we first recall briefly in Section 2 the basics of brane dynamics,
focusing on the equations that will be needed for our present purpose. We then
investigate in Section 3 the small scales properties of this gravity force and will
show that the standard Newton gravitational force can be recovered but that post-
Newtonian effects put severe constraints on this force. In Section 4, we describe
the cosmology with such a gravity and finish (Section 5) by discussing the viability
and possible extention of this effect. Although it will suffer from a severe fine-
tuning and the simplest model present here does not provide a viable alternative,
the simulated gravity presented here is still of physical ineterest since it provides
small but not necessary negligible corrections to the genuine effective gravitation
(in the same sense as the centrigugal force provides corrections to the Newton
attraction force on the Earth) as soon as the reflection symmetry is broken.

2. BASICS OF NONGRAVITATING BRANE DYNAMICS

We consider a three-brane (i.e. a four-dimensional worldsheet) embedded in
a (p+ 1)-dimensional space-time. We follow the notations of (Carter, in press) to
which the reader is referred for more details. Introducing the embedding functions
x̄µ(σ a) (with µ = 0..4 anda = 0..3) defining the locus of the brane in terms of its
internal coordinatesσ a, the five-dimensional metricgµν induces a metricγab on
the brane defined as

γab ≡ gµν
∂ x̄µ

∂σ a

∂ x̄ν

∂σ b
, (4)

which can then be mapped to the first fundamental tensor as

γ µν ≡ γ ab∂ x̄µ

∂σ a

∂ x̄ν

∂σ b
. (5)

If we denote bynµ the normal vector to the brane, the second fundamental tensor
(also referred to as extrinsic curvature) is defined by

Kµν ≡ −∇̄µnν , (6)
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Fig. 2. The brane setup and the definition of the induced metric and
embedding functions.+ and− refer to the two sides of the brane and
the unit normal vectornµ points toward the region+.

where we have introduced the tangentially projected differentiation operator∇̄µ =
γ̄ νµ∇ν ,∇ν being the covariant derivative associated togµν . To finish, we use square
and angle brackets to denote respectively the jump and the mean of any quantity

[ A] = A+ − A− 〈A〉 = 1

2
(A+ + A−), (7)

where+ and− refer to the two sides of the brane (see Fig. 2).
The Israel junction conditions relate the jump of the extrinsic curvature to the

matter content of the brane. Since we assume thatG5 = 0, we deduce that

[K γ̄µν − Kµν ] = 6π2G5T̄µν = 0, (8)

so that

[Kµν ] = 0, (9)

from which it follows that〈Kµν〉 = Kµν .
The dynamics of the brane is governed by the equation of motion (Carter, in

press)

T̄ µνKµν = f̄ = − [Tµν

bulk

]
nµnν , (10)

which applies when self-gravity is negligible so that the bulk geometry is not
affected by the brane and remains smooth.f̄ is the orthogonal component of
the external force density. Moreover the brane stress-energy tensor satisfies the
conservation law

γ̄νρ∇̄µT̄ µν = 0, (11)

as long as the external force density has no tangential component. In the following,
we shall consider only the case where this force arises from the minimal coupling
to a gauge four-form for which̄f is simply a constant.
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Eq. (10) is the generalization to any dimension of the Newton equation relating
the acceleration of a body to the forces acting on that body. The extrinsic curvature
is the generalization of the acceleration and the stress-energy tensor the one of
the mass of the body. To have an intuitive understanding of its meaning, we can
apply it to a standard two-dimensional bubble of radiusR and of isotropic tension
σ . The pressures inside and outside the bubble are respectivelyPin and Pout so
that f̄ = −[Tµν

bulk]nµnν = Pin − Pout. The stress-energy tensor is just proportional
to the first fundamental tensor,̄Tµν = σ γ̄ µν and the extrinsic curvature is given by
the Gauss curvatureKµν = γ̄µν/R. It follows that Eq. (10) reduces to the standard
relation 2σ/R= Pin − Pout.

3. SMALL SCALES: NEWTON-LIKE FORCE AND POST-NEWTONIAN
CONSTRAINTS

We first consider a perturbed configuration (see Fig. 3) of the brane setup
presented in the previous section so that we can decompose the first and second
fundamental tensors respectively as˜̄γ µν = γ̄µν + δL γ̄µν andK̃µν = Kµν + δL Kµν .
Since the genuine gravitation is negligible, the geometry of the bulk remains un-
affected and the only change in the metric tensor will be purely Lagrangian and
given by

δL γ̄µν = δLgµν = 2∇(µ ξν ), (12)

whereξµ is the displacement vector. When working out perturbations, we always
have to face a gauge freedom related to the freedom of the identification of the
points of the perturbed manifold to the ones of the unperturbed manifold. We
choose to fix the gauge by working in the orthogonal gauge defined by

ξµ = ξ nµ. (13)

It follows (see Carteret al., 2001, for details) that

δL γ̄µν = −2ξKµν , δL K = ∇̄µ∇̄µ ξ + ξ
3

(R̄+ 4CµνCµν − 5γ̄ µνSµν). (14)

Fig. 3. Configuration of the perturbed brane (dash
line) and of the unperturbed reference configuration
(solid line). The definition of the displacementξµ

has a gauge freedom and the orthogonal gauge is
defined by imposingξµ = ξnµ.
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whereCµν is the tracefree part of the extrinsic curvature,Sµν the tracefree part of
the bulk Ricci tensor and̄R the brane intrinsic Ricci scalar.

With these results, the perturbed version of the equation of motion (10) takes
the form ˜̄T µν K̃µν = f̄ with a perturbed surface energy–momentum tensor of the
form

˜̄T µν ≡ −T∞ ˜̄γ µν + ˜̄τµν , (15)

in which the constantsT∞ and f̄ are just the same as in the reference configuration.
By subtracting this dynamical equation from its unperturbed analogue (10) we are
left with the dynamical source equation for the displacementξ

T∞δL K = Kµν( ˜̄τµν − τ̄ µν)+ τ̄ µνδL Kµν. (16)

Whenτ̄µν = 0 and˜̄τµν = 0, Eq. (16) can be interpreted, using (14), as the equa-
tion of evolution for a scalar fieldξ nonminimally coupled to the Ricci scalar,̄R,
and with an effective mass given (of the kind discussed by Garriga and Vilenkin
(1991)) bym2

ξ ≡ −(4CµνCµν − 5γ̄ µνSµν)/3.
Let us now consider the field in the neighborhood of a static spherical con-

centrated nonrelativistic source of integrated massM̃ , that is one whose energy-
momentum contribution is given in terms of a preferred timelike unit reference
vectorūµ by

˜̄τµν − τ̄ µν ' M̃δ(r )ūµūν , (17)
wherer is the radial distance from the center. Considering a region small compared
to the reference curvature scale so that we can work to first order both in ¯τµν/T∞
and in the displacementξ , the second term of the r.h.s. of Eq. (16) is of order
O(ξ τ̄µν/T∞) and thus negligible. On short lengthscales where we can keep only
the highest order derivative terms, it leads to

ξ '
( −K00

(p− 3)Ä[ p−2]T∞

)
M̃

r
. (18)

It follows that the gravitational potential on the brane is given by

h00 ' 2G4

M̃

r̄
, (19)

if one identifies the unrationalized four-dimensional gravitational constant as

G4 = K 2
00

4πT∞
. (20)

It thus provides a plausible theory of Newtonian gravity but post-Newtonian effects
(Will, 2001) (including light deflection, Shapiro effects. . . ) imply that the local
extrinsic curvature is very close to (see Carteret al., 2001, for details)

Kµν = K00
(
2ūµūν + γ̄µν

)
, (21)

which indeed represents a very special configuration.
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4. LARGE SCALES: A NONSTANDARD COSMOLOGY

The reference homogeneous configuration is solution of the Einstein vacuum
equations,Sµν = 0 and thus of the static form

ds2 = r 2 d`2+ dr2

V − V dt2, (22)

whered`2 is the positive–definite space metric of a three-dimensional sphere,
plane, or antisphere with constant curvature,k say, respectively positive, zero,
or negative, andV is a function only ofr . The location of the brane worldsheet
will be given by an expression of the formr = a(t). There will be an equivalent
brane-based formulation

ds2 = r 2 d`2+ dζ 2− ν2 dτ 2, (23)

in which the worldsheet locus is given simply byζ = 0, and in whichτ represents
proper time on this locus, so thatν = 1 there. Using a dot to denote partial differ-
entiation with respect toτ , and a dash for partial differentiation with respect toζ ,
the rate of change of the scale factora will satisfy the conditions

ȧ2 = r ′2− V and ȧ2 = ṙ 2/ν2. (24)

Note that in the standard self-gravitating case the Birkhoff only applies in the
cases where the matter in the bulk is either a cosmological constant (Bowcock
et al., 2000) or a gauge four-form (Carter and Uzan, 2001) but that in the case
under consideration here where the true gravity is negligible it applies whatever
the matter content of the bulk.

The functionV(r ) is given byV(r ) = k−3r 2/6− 2G4M/r 2. We choose to
setk = 0 on observational grounds favoring an almost spatially flat universe and
have setG5 = 0 in the spirit of this paper. It follows, from (24) and the conservation
of the brane stress-energy tensor (11), that the expansion of the brane universe is
governed by the Friedmann-like equation(

ȧ

a

)2

= 3̄4

3
+ 1

T 2∞

[
1

(1+ ε)2

(
f̄

4
+ E

a4

)2

−
(

f̄

4

)2
]

, (25)

whereε ≡ ρ̄/T∞ and3̄4/3= 3/6+ ( f̄ /4T∞)2, and whereE is an integration
constant that can be interpreted as the global energy of the system. Expanding in
terms ofε we get(

ȧ

a

)2

= 3̄4

3
+ 1

T 2∞

[
f̄

2

E

a4
+ E2

a8
− 2ε

(
f̄

4
+ E

a4

)2
]
+O(ε2). (26)

Usually (Binétruyet al., 2000),E is bounded by the nucleosynthesis constraint. The
idea of the present approach is that instead of being small,E is large enough to give
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a positive contribution that can overcome the negative contribution proportional to
−ε. The cosmological scenario will thus have an era dominated by what we refer
to as pseudoradiation, that will last until at least the present epoch unless it was
superseded by a recent transition to an epoch of domination by a cosmological
constant.

The requirements that the negative term in (26) does not dominate and to
avoid premature domination by the cosmological constant implies that

4E > f̄ ε0
r ϑeq, f̄

(
4E − f̄ ε0

r ϑeq
) ≥ 8

3
|34|T 2

∞, (27)

whereϑeq≡ ε0
m/ε

0
r is the ratio of the present energy densities in the matter and

radiation. Nucleosynthesis implies that the four-dimensional Newton constant is
identified with

GN = 3 f̄

16πT 3∞

(
E

ε0
r

− f̄

4

)
, (28)

and that

f̄ (4E − f̄ ε0
r ) > 8E

(
E − f̄ ε0

r

)
ϑ4

N (29)

whereϑN ∼ 1010 (see Fig. 4).

Fig. 4. Sketch of the cosmological scenario. The pseudoradiation com-
ponentE/a4, which scales light radiation, is supposed to dominate the
matter content of the universe until recently where the cosmological
constant starts to dominate.
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5. VIABILITY

The simulated gravity model presented here provides a local gravitational
interaction of the familiar Newtonian kind and can be contrived in such a way as
to satisfy the most stringent cosmological constraint—-namely the one provided
by nucleosynthesis. However it is still confronted with other serious problems.

1. It suffers from a double fine-tuning requirement arising from the fact that,
on local scales, the gravitational constant depends a priori on time and
that this time variation is observationnaly well constrained (Dickeyet al.,
1994).

2. The predicted post-Newtonian effects and the current observational limits
(Will, 2001) imply that the local value extrinsic curvature should turn
out to be almost exactly of the form (21). Note that, at this stage of our
investigation, these restrictions are not worse than those occuring e.g.
for scalar–tensor theories of gravity (see Carter, 2000, for a comparison)
before the mechanism of attraction (Damour and Nordtvedt, 1993) toward
General Relativity was discovered.

3. In addition to the kinds of observational restrictions we have considered
so far, it is to be noted that there will be others involving nonlinear effects
and motion of the source as well as gravitational waves production.

4. Concerning the cosmology of our model, the expansion rate switches from
a pseudoradiation to a cosmological constant dominated phase whereas
the matter content switches from a radiation dominated era to a matter
dominated era. This is a nonstandard cosmological scenario and in the case
of the standard cosmology, it is known that density perturbations needed
for subsequent galaxy formation cannot grow during a radiation dominated
era. However it is not yet clear what may happen in a pseudoradiation era
in which the strength of gravity on shorter scales is affected by the nature
of fluctuations on longer scales.

5. The small scales and large scales determined four-dimensional effective
gravitational constant are not equal. This discrepancy is not unreasonable
in view that the brane configuration may have different curvature on small
and large scales. We need a transition scale between these two behaviors
that has to range somewhere above the galaxy scale. However, this scale is
not directly determined by the model and might involve a third fine-tuning.
A potentially relevant test that can be thought of is weak gravitational
lensing on cosmological scales (Uzan and Bernardeau, 2001) which can
provide a probe of the Newtonian law of gravitation (and more particularly
of the Poisson equation) up to some hundreds of megaparsecs when data are
available. This may be able to provide constraints on this transition scale.

The present model of simulated gravity, which originates from the breaking
of the reflection symmetry in brane-world scenarios, reproduces a Newton-like
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gravity on small scales. The simplest version presented here suffers from many
other problems arising from the post-Newtonian and cosmological properties of
this gravity. We emphasize that in this model the gravity is tensorial and given
by a space-time description but that it has only one degree of freedom. It extends
previous investigations (Kehagias and Kiritsis, 1999) that were restricted to the
cosmological context by investigating the small scale behavior and by allowing
realistic matter on the brane. It is not a scalar gravity and the universality of free
fall is not violated on the brane. The model can be improved in many ways by
allowing matter such as a scalar field in the bulk, by changing the number of
extradimensions or the bulk space-time structure. Besides, this gravity component
is always present in models where the reflection symmetry is broken and in any
moving brane model and, even if it has to be small, it may not be negligible.
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